
Batch Methods for Incremental Learning
Noah Golmant

University of California, Berkeley
Department of Computer Science

noah.golmant@berkeley.edu

Evan R. Sparks
University of California, Berkeley
Department of Computer Science

sparks@cs.berkeley.edu

Joseph Gonzalez
University of California, Berkeley
Department of Computer Science

jegonzal@cs.berkeley.edu

ABSTRACT
Data is increasingly collected and processed in an online fashion,
but existing large-scale machine learning systems are batch-oriented.
Existing stream-oriented ML algorithms are often limited in appli-
cation scope or present significantly stronger assumptions to the
learning model. We present two techniques to automatically and
generically adapt batch-oriented algorithms to the incremental set-
ting, extend an existing large-scale system to support the algorithms,
and demonstrate the effectiveness of these techniques on several
classification workloads.

1 INTRODUCTION
The speed at which data is collected and expected to be acted upon
is rapidly increasing. Traditional methods for training and updating
machine learning models utilize batch processing techniques, but
these approaches become more and more expensive as data arrives
more quickly.

Incremental and online learning techniques offer the opportunity
to improve model performance by integrating new data in a con-
tinuous manner [5]. This avoids the need to fully retrain on every
new batch of data. However, most machine learning algorithms are
designed for batch environments [1] and deploying these algorithms
in the online setting can be challenging due to the sensitivity of
algorithm parameters to changing workloads and in many cases may
degrade accuracy significantly.

In this work, we investigate two generic techniques to efficiently
and accurately incorporate new data into an existing model in order
to significantly reduce training time while minimizing degradation
in prediction accuracy. In both methods, we introduce light-weight
model update procedures that leverage existing batch learning algo-
rithms by constructing fixed datasets from the stream. In order to
achieve these goals, we make the assumption that data arrives into
the system in mini-batches of a fixed size, as in large-scale streaming
systems like Spark’s Structured Streaming [9].

The key insight in this work is that we can leverage a duality
between spatial and temporal partitioning of data to transform ad-
vances in communication-efficient statistical optimization designed
to enable learning across space to derive new streaming algorithms
that effectively communicate efficiently across time. That is, we
take algorithms that are designed for physically partitioned datasets
and apply them to physically and temporally partitioned datasets,
enabling systems support for incremental learning with modest addi-
tional overhead and implementation effort, The two techniques we
propose here leverage existing distributed machine learning frame-
works to derive stream oriented machine learning algorithms. We
again emphasize the generic nature of these techniques: this allows
us to implement a broader class of optimization algorithms that are
traditionally less well-suited for streaming environments.

Finally, we demonstrate how such these extensions can be ef-
fectively incorporated into a batch-oriented system. We extend
KeystoneML [10], a framework to construct distributed, end-to-end
machine learning pipelines, to use these incremental techniques
with minimal changes. We experimentally validate the expected
trade-offs between statistical accuracy and training run-time in a
large-scale incremental learning environment.

2 BACKGROUND
The majority of work in distributed machine learning has been aimed
towards batch learning algorithms and optimization techniques. In
the batch setting, we receive large batches of training points from
which we produce a machine learning model that one then deploys to
the field. To produce a model, these methods require as input a large
number of examples, processed all at once. However, many such
methods do not scale well enough to handle larger data workloads
and parameter spaces[2]. Additionally, if the underlying input data
distribution changes over time in a phenomenon known as temporal
or concept drift [13], this training process becomes impractical and
actually degrades statistical accuracy as the model becomes ”stale”.

In the incremental learning setting, we receive new data and up-
date an existing machine learning model to extend model knowledge
[5]. The model stores only some of the statistics of the training
data, and the learning algorithm requires strategies to update the
model while preventing it from ”forgetting” the statistics of older
data. Such algorithms are typically difficult to transfer directly into
an incremental setting, and require significant modifications to do
so. There are no ”one-size-fits-all” incremental learning algorithms.

KeystoneML [10] is a framework to construct end-to-end machine
learning pipelines by composing a series of logical operators on data.
In this work, we extend KeystoneML on Apache Spark to introduce
new operators to perform incremental learning in a primarily batch-
oriented system. The techniques and operators developed here also
easily extend to frameworks like Spark’s Structured Streaming.

3 BATCH METHODS FOR INCREMENTAL
LEARNING

Consider a learning algorithm on a live data stream at some time t .
We have an existing parameter vector θt that represents the estimated
parameters of the model at time t . Our goal is to extend this model
to incorporate n new data points from the stream to produce the next
parameter vector, θt+1.

In the presence of infinite memory and computing power, we
could store all data and retrain on everything we have seen so far.
This guarantees high performance, since we are using the best offline
methods available, but requires a model updates that run quadratic in
the number of samples. Given memory and computing constraints,
we must instead learn primarily from this new data.



Batch Methods for Incremental Learning Noah Golmant, Evan R. Sparks, and Joseph Gonzalez

To do so, we consider three methods. One of these demonstrates
the issues surrounding incremental learning. The other methods
are able to produce good models using batch-oriented algorithms
that operate on fixed subsets of the stream. Their generic nature
allows us to optimize training objectives using techniques other than
streaming stochastic gradient descent, like L-BFGS [2].

3.1 One-shot SGD
Perhaps the best known incremental learning algorithm for convex
optimization is Stochastic Gradient Descent (SGD). Given an input
dataset, SGD iteratively computes a stochastic approximation of the
true gradient of the objective function, using only a small batch of
training samples.

Unfortunately, building a model with SGD requires multiple
passes, or epochs, over the training data. In the incremental learning
setting, it is impossible to make multiple passes over the training
data because it is potentially infinite, and we wish to look at the new
data exactly once– we instead can only perform one-shot SGD. As
we will show in Section 5, this lack of access to data history during
training can result in models that significantly under-perform models
trained using the conventional method.

To address this issue, we now propose two incremental update
algorithms which take advantage of established theoretical results to
learn models that perform closer to those trained in the batch setting
than those trained using one-shot SGD with similar requirements in
terms of computation and memory.

3.2 Reservoir Sampling
We consider learning on a dataset X of size N , which is divided into
m partitions, each of size n. We denote partition t of X as Xt =
{xt1 ,x

t
2 , . . . ,x

t
n },∀t ∈ {1, . . . ,m}. Each entry xti of the partition

is some real-valued, d-dimensional vector. To perform reservoir
sampling, we construct a reservoir R, which is an array consisting of
k elements. We store the first k points we see immediately in R. As
we receive a new batch Xt containing n new elements, we consider
each element xti ∈ Xt such that with probability 1/t , we replace
some existing element in R with xti , and with probability 1 − 1/t we
keep the old item. This provides an unbiased sample of the dataset
at time t , and so running SGD on this sampled subset provides an
unbiased estimate of the gradient of the loss function [11].

To train the model for time t + 1, we initialize the learning algo-
rithm to the parameter vector θt obtained in the previous step. We
mix in the n samples according the procedure above, and we apply
our learning algorithm to train a new parameter vector, θt+1, on the
examples contained in R. We can use any existing batch-oriented
algorithm to learn a model from a fixed-size dataset constructed
from the stream.

3.3 Model Averaging over Time
We now consider learning a parameter vector θt that attempts to
minimize an objective function f (Xt ) on a particular partition. We
can create a new model with parameter vector θ by simply averaging
all the previously learned parameters:

θ =
1
m

m∑
t=1

θt

Assuming the objective f follows certain convexity constraints
commonly satisfied by machine learning techniques that fall in the
class of convex empirical risk minimization (e.g., ridge regression
and logistic regression), then the authors of [12] prove that this model
achieves mean squared error that decays as O(N−1 + (N /m)−2).
Moreover, recent work suggests that this simple method is still
useful in optimizing over the highly non-convex loss surfaces of
neural networks [7].

Now we can consider the situation in which we sequentially
process the partitions in an unbounded stream, and we do not know
the number of partitions,m, or the total number of points, N . Then
we can instead compute the new parameter vector θnew , minimizing
the objective f (Xt ) on the current partition, and we incorporate it
into the model for time t + 1 using a weighted average:

θt+1 := αtθnew + (1 − α)θt

For 0 ≤ αt ≤ 1. This update step is easy to perform, and it does
not make any restrictions on the types of algorithms used to produce
θnew . This enables, for example, the use of second-order methods
like L-BFGS in a streaming context. In our experiments, we will use
αt = 1/(t +1) to recover a simple cumulative average. However, one
may use this technique to incorporate additional knowledge about
distributional drift or model confidence in a simple manner.

4 INCREMENTAL LEARNING FOR
KEYSTONEML

The KeystoneML framework allows the user to compose batch-
oriented machine learning pipelines using a set of logical operators.
We attempt to make a minimal set of changes to the underlying
framework to allow for incremental learning. In KeystoneML, an
Estimator is a logical operator that is applied to a distributed
collection of data items to produce a Transformer, which is
itself an operator that can be applied to data items to produce new
data items (e.g. features or predictions).

4.1 Core addition: Incremental Estimators
Our core addition to KeystoneML is a new logical operator to facili-
tate incremental learning. This operator, the IncrementalEstimator,
does not change the underlying methods to compose operators into
a pipeline. With it we introduce the Model interface. a Model can
represent any learned parameters for an estimator, e.g. the weights
of a logistic regression model.

4.2 Incremental updates
The first IncrementalEstimator takes an initial Model ob-
ject and a collection of data items to produce a new Model. A
new Transformer uses a Model to make predictions on data.
When new data is available to train on, we can use the Model
produced at the previous step as the starting point for the new
IncrementalEstimator. We detail the interface in figure 5.
This approach is similar to the partial fit API of the popular
sklearn package in Python, but operates at scale and within an
overarching pipelined structure. It also fits into the existing com-
putation graph structure of KeystoneML which enables significant
efficiency gains.



Batch Methods for Incremental Learning Noah Golmant, Evan R. Sparks, and Joseph Gonzalez

Figure 1: Microbenchmark statistics for trigger classification
on the ACE2005 dataset.

(a) Statistical performance on a test set. (b) Cumulative training runtime.

As an example, consider a LogisticRegression class that
implements the IncrementalEstimator interface. At time t
we learn the weights vector θt given the new dataXt . A Transformer
object uses θt to make predictions on data. At the next timestep,
we supply both θt and the new data, Xt+1, as arguments to the
LogisticRegression class. This produces a new weight vec-
tor, θt+1, and a Transformer that uses these weights to make
new predictions. An example of this procedure is shown in figures 3
and 4.

This is flexible enough to accommodate batch-oriented algo-
rithms, as well as the incremental adaptations that use the methods
outlined in section 3.

5 EVALUATION
We compare the reservoir sampling and model averaging methods
against a baseline and a naive incremental adaptation. The baseline
represents the degenerate case of training a new model using all data
we have ever seen. In the naive incremental adaptation, we use an
online algorithm like stochastic gradient descent with an annealed
learning rate.

We first test the results on a microbenchmark, using an NLP
binary classiication task derived from the ACE2005 event extraction
challenge. The goal of this task is to identify whether a word token
is a ”trigger” word, i.e. if it indicates the presence of an event in a
sentence. Word tokens are represented as vectors extracted from a
Word2Vec model [8]. We implement the incremental and baseline
methods using logistic regression in the scikit-learn package in
Python. Finally, we test the model averaging technique using a new
incremental API in KeystoneML. For both of the model averaging
and reservoir sampling methods, we optimize the logistic regression
objective using and L-BFGS solver.

5.1 Incremental Loss Comparisons
We compare the different approaches on test error as a function of
the number of data batches seen. The results are shown in figure
2a. Note that the final error of the reservoir model is within 8%
of the baseline, and model averaging results in a model with error
within 10% of the baseline. The naive incremental method, however,
fails to achieve comparable results. We emphasize that the poor
performance of the One-Shot SGD case is due to the fact that each
piece of data is presented exactly once.

Figure 2: Statistics for the Amazon reviews dataset on Key-
stoneML.

(a) Statistical performance on the test
set.

(b) Cumulative training runtime.

val featurizer = Trim andThen

LowerCase andThen

Tokenizer andThen

NGramsFeaturizer(1 to 2) andThen

TermFrequency(x => 1) andThen

(CommonSparseFeatures(1e5), data)

val textClassifier = featurizer andThen

(LogisticRegression(lambda=1e-3), data, labels)

val predictions = textClassifier(testData)

Figure 3: A batch KeystoneML text classification pipeline gains
support for incremental updates with only minor changes to the
highlighted core learning operators.

val prevModel = textClassifier.model

val newTextClassifier = featurizer andThen

(LogisticRegression(lambda=1e-3), newData, newLabels, prevModel)

val newPredictions = newTextClassifier(testData)

Figure 4: We incrementally update the existing model with new
training data.

abstract class IncrementalEstimator[A, B, M] {

def withData(data: RDD[A], oldModel: M): (Pipeline[A, B], M)

def fit(data: RDD[A], oldModel: M): M

def transformer(model: M): Transformer[A, B]

}

Figure 5: An API for the IncrementalEstimator operator.

5.2 Training runtime
In figure 2b, we plot the cumulative training time of the various algo-
rithms. We observe a linear speedup in total training time between
the baseline and incremental methods with respect to the number of
data batches processed.

5.3 Implementation in KeystoneML
We implement the IncrementalEstimator operator according to the
API specified in figure 5. We test it using the model averaging tech-
nique with a text classification pipeline based on logistic regression
over TF-IDF [6] n-gram features of a corpus of Amazon product
reviews, as illustrated in Figure 3. The dataset consists of 65m prod-
uct reviews with 100k sparse features. We simulate an incremental



Batch Methods for Incremental Learning Noah Golmant, Evan R. Sparks, and Joseph Gonzalez

environment by dividing the dataset into 100 equally sized partitions.
The online components of this pipeline are highlighted in the fig-
ure. Importantly, the application developer-facing changes required
to make this pipeline support incrementalism were only modest
changes to the operator definitions for the Estimator operators,
CommonSparseFeatures and LogisticRegression. Sta-
tistical performance and training runtime for this pipeline is shown
in figures 3a and 3b. The training time improvement and the learn-
ing curves are similar to those obtained in the microbenchmark
implementation.

6 RELATED WORK
Related to this work is the HAZY [4] system, which encompasses
training and inference inside an RDBMS, and provides cheap incre-
mental model updates to incorporate new data. However, model per-
formance iteratively degrades using the cheap updates, and HAZY
uses heuristic strategies to determine when to update the model to
use all the data available.

We refer to [12] to validate the model averaging technique in
a physically distributed setting. This work differs in that it dis-
tributes the workload across a stream instead of across independent
machines.

Reservoir sampling is a technique to choose a random sample of
k elements from a list containing N items, where N is very large
or unknown. The authors of [3] demonstrate an efficient way to
perform reservoir sampling in a memory-constrained environment.

KeystoneML [10] is a system to construct end-to-end large-scale
machine learning pipelines in a distributed environment. KeystoneML
uses a high-level API to specify pipelines by composing logical op-
erators. We directly extend it to implement incremental learning in a
batch-oriented system.

7 CONCLUSIONS AND FUTURE WORK
In this work we have demonstrated the effectiveness of two novel
incremental learning techniques that work with traditionally dis-
tributed, batch-oriented algorithms and are simple to implement.
Both empirically achieve a small degradation in predictive perfor-
mance for a large speedup in training time.

The model averaging technique has been analyzed in the case of
some convex objective functions, but recent work has demonstrated
its potential in the case of the non-convex objectives of neural net-
works in a federated learning context [7]. It remains to be seen how
effective these physically distributed deep learning techniques are in
a streaming context.

Several questions remain open for future work. For example,
future work may investigate how incremental learning performance
varies as the size of a data batch varies over time. Also, it remains to
be seen that these techniques are effective in the presence of targeted
concept drift.

REFERENCES
[1] R. Ade and P. Deshmukh. Methods for incremental learning: a survey. Inter-

national Journal of Data Mining & Knowledge Management Process, 3(1):119,
2013.

[2] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale
Machine Learning. ArXiv e-prints, June 2016.

[3] P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir.
Information Processing Letters, 97(5):181–185, 2006.

[4] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for
in-rdbms analytics. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 325–336. ACM, 2012.

[5] P. Joshi and P. Kulkarni. Incremental learning: Areas and methods-a survey.
International Journal of Data Mining & Knowledge Management Process, 2(5):43,
2012.

[6] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to information
retrieval, volume 1. Cambridge university press Cambridge, 2008.

[7] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. Federated learning of
deep networks using model averaging. CoRR, abs/1602.05629, 2016.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[9] M. P. Singh, M. A. Hoque, and S. Tarkoma. Analysis of systems to process
massive data stream. CoRR, abs/1605.09021, 2016.

[10] E. R. Sparks, S. Venkataraman, T. Kaftan, B. Recht, and M. J. Franklin. Key-
stoneML: Optimizing pipelines for large-scale advanced analytics. In ICDE.
IEEE, 2017.

[11] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathemati-
cal Software (TOMS), 11(1):37–57, 1985.

[12] Y. Zhang, M. J. Wainwright, and J. C. Duchi. Communication-efficient algorithms
for statistical optimization. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1502–1510. Curran Associates, Inc., 2012.

[13] I. Zliobaite. Learning under concept drift: an overview. CoRR, abs/1010.4784,
2010.


	Abstract
	1 Introduction
	2 Background
	3 Batch methods for incremental learning
	3.1 One-shot SGD
	3.2 Reservoir Sampling
	3.3 Model Averaging over Time

	4 Incremental Learning for KeystoneML
	4.1 Core addition: Incremental Estimators
	4.2 Incremental updates

	5 Evaluation
	5.1 Incremental Loss Comparisons
	5.2 Training runtime
	5.3 Implementation in KeystoneML

	6 Related Work
	7 Conclusions and Future Work
	References

